Neuronal Differentiation Dictates Estrogen-Dependent Survival and ERK1/2 Kinetic by Means of Caveolin-1
نویسندگان
چکیده
Estrogens promote a plethora of effects in the CNS that profoundly affect both its development and mature functions and are able to influence proliferation, differentiation, survival and neurotransmission. The biological effects of estrogens are cell-context specific and also depend on differentiation and/or proliferation status in a given cell type. Furthermore, estrogens activate ERK1/2 in a variety of cellular types. Here, we investigated whether ERK1/2 activation might be influenced by estrogens stimulation according to the differentiation status and the molecular mechanisms underling this phenomenon. ERK1/2 exert an opposing role on survival and death, as well as on proliferation and differentiation depending on different kinetics of phosphorylation. Hence we report that mesencephalic primary cultures and the immortalized cell line mes-c-myc A1 express estrogen receptor α and activate ERK1/2 upon E2 stimulation. Interestingly, following the arrest of proliferation and the onset of differentiation, we observe a change in the kinetic of ERKs phosphorylation induced by estrogens stimulation. Moreover, caveolin-1, a main constituent of caveolae, endogenously expressed and co-localized with ER-α on plasma membrane, is consistently up-regulated following differentiation and cell growth arrest. In addition, we demonstrate that siRNA-induced caveolin-1 down-regulation or disruption by means of ß-cyclodextrin treatment changes ERK1/2 phosphorylation in response to estrogens stimulation. Finally, caveolin-1 down-regulation abolishes estrogens-dependent survival of neurons. Thus, caveolin-1 appears to be an important player in mediating, at least, some of the non-genomic action of estrogens in neurons, in particular ERK1/2 kinetics of activation and survival.
منابع مشابه
Caveolin-1 regulates contractility in differentiated vascular smooth muscle.
Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissu...
متن کاملRegulation of group I metabotropic glutamate receptor trafficking and signaling by the caveolar/lipid raft pathway.
Endocytic trafficking of neurotransmitter receptors is critical to neuronal signaling and activity-dependent synaptic plasticity. Although the importance of clathrin-mediated endocytosis in receptor trafficking in neurons is well established, the contribution of the caveolar/lipid raft pathway has been little explored. Here, we show that caveolin-1, an adaptor protein that associates with lipid...
متن کاملDifferential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall.
The role of caveolae in stretch- versus flow-induced vascular responses was investigated using caveolin 1-deficient [knockout (KO)] mice. Portal veins were stretched longitudinally for 5 min (acute) or 72 h (organ culture). Basal ERK1/2 and Akt phosphorylation were increased in organ-cultured KO veins, as were protein synthesis and vessel wall cross sections. Stretch stimulated acute phosphoryl...
متن کاملEndothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction.
Endothelin-1 (ET-1) stimulates glomerular mesangial cell proliferation and extracellular matrix protein transcription through an ERK1/2-dependent pathway. In this study, we determined whether ET-1 activation of glomerular mesangial cell ERK1/2 is mediated through EGF receptor (EGF-R) transactivation and whether intact caveolae are required. We showed that ET-1 stimulated tyrosine phosphorylatio...
متن کاملEmpowerment of Balb/C mouse neuron and glial cells in steroidogenesis after activation of the SHH signaling pathway and co-treatment with pregnenolone
Background: Steroid production has been reported in the asexual tissues of the nervous system. Stimulants are in the normal activity, function and function of the nervous system. Identifying the conduction pathways involved in glucocorticoids and enabling brain parenchymal cells can offset the balance in the active nervous system at old ages when the body is depleted. Therefore, in this stu...
متن کامل